الفيزياء النووية – Nuclear Physics – E3Arabi – إي عربي

تبادل الميزونات بين البروتونات والنيوترونات مسؤول بشكل مباشر عن القوة الشديدة. في النشاط الإشعاعي وفي الاصطدامات التي تؤدي إلى الانهيار النووي، يتم تغيير الهوية الكيميائية للهدف النووي كلما حدث تغيير في الشحنة النووية، في تفاعلات الانشطار والاندماج النووي التي يتم فيها تقسيم النوى غير المستقرة، على التوالي، إلى نوى أصغر أو دمجها إلى نوى أكبر، فإنّ إطلاق الطاقة يتجاوز بكثير أي تفاعل كيميائي. فيزياء الجسيمات – Particle physics: أحد أهم فروع الفيزياء المعاصرة هو دراسة المكونات الأساسية دون الذرية للمادة، وهي الجسيمات الأولية، ظهر هذا المجال الذي يُطلق عليه أيضاً "فيزياء الطاقة العالية"، في الثلاثينيات من القرن الماضي من المناطق التجريبية المتطورة في الفيزياء النووية والأشعة الكونية. المعجلات النووية - شبكة الفيزياء التعليمية. درس الباحثون في البداية الأشعة الكونية، وهي الإشعاعات عالية الطاقة خارج كوكب الأرض التي تسقط على الأرض وتتفاعل في الغلاف الجوي. ومع ذلك، بعد الحرب العالمية الثانية، بدأ العلماء تدريجياً في استخدام مسرعات الجسيمات عالية الطاقة لتوفير الجسيمات دون الذرية للدراسة. تعد نظرية المجال الكمي، وهي تعميم لـ (QED) على أنواع أخرى من مجالات القوة، ضرورية لتحليل فيزياء الطاقة العالية.

  1. المعجلات النووية - شبكة الفيزياء التعليمية
  2. الفيزياء النووية – Nuclear Physics – e3arabi – إي عربي

المعجلات النووية - شبكة الفيزياء التعليمية

تتشكل الباريونات، مثل النيوترونات والبروتونات، من خلال الجمع بين ثلاثة كواركات، وبالتالي فإنّ شحنة الباريونات تكون (−1 أو 0 أو 1)، تتكون الميزونات (Mesons)، وهي الجسيمات التي تتوسط القوة الشديدة داخل النواة الذرية، من كوارك واحد وواحد مضاد، جميع الميزونات المعروفة لها شحنة (−2 أو 1 أو 0 أو 1 أو 2)، معظم تركيبات الكواركات الممكنة أو الهادرونات، لها عمر قصير جداً، والعديد منها لم يُرى أبداً على الرغم من ملاحظة مسرعات إضافية مع كل جيل جديد من مسرعات الجسيمات الأكثر قوة. الحقول الكمومية – Quantum fields: تتكون الحقول الكمومية التي تتفاعل من خلالها الكواركات واللبتونات مع بعضها البعض ومع نفسها من كائنات تشبه الجسيمات تسمى الكوانتا (والتي اشتق اسمها من ميكانيكا الكم). كانت الكميات الأولى المعروفة هي تلك الخاصة بالمجال الكهرومغناطيسي ، وتسمى أيضاً "الفوتونات" لأنّ الضوء يتكون منها، تقترح النظرية الموحدة الحديثة للتفاعلات الضعيفة والكهرومغناطيسية، والمعروفة باسم نظرية "Electroweak"، أنّ القوة الضعيفة تنطوي على تبادل جسيمات تبلغ كتلتها حوالي 100 ضعف كتلة البروتونات، وقد رُصدت هذه الكميات الضخمة "أي جسيمان مشحونان"، (W+ وW-) وجسيم محايد (W 0).

الفيزياء النووية – Nuclear Physics – E3Arabi – إي عربي

5 سم والمجال المغناطيسي 1. 3 تسلا وهذا انتج بروتونات معجلة بطاقة 1. 2 مليون الكترون فولت. وبعد عدة سنوات تم تطوير معجل السنكلترون ليصل نصف قطره إلى 35 سم وطاقة تعجيل البروتونات تصل إلى 10 مليون الكترون فولت. وفي نهاية 1930 تم بناء معجل سنكلترون نصف قطره 75 سم وطاقة تعجيل البروتونات تصل إلى 20 مليون الكترون فولت. في الصورة التالية معجل سنكلترون في مختبر Argonne National Laboratory حيث يتضح المغناطيس العلوي والسفلي كذلك تظهر الصورة شعاع الجسيمات التي تنطلق من المعجل نتيجة تأينها للهواء. المعجل الخطي Linear accelerator يدعى هذا المعجل باسم ليناك Linac وفيه يتم تعجيل الجسيمات المشحونة على مراحل بواسطة فرق جهد متردد كما في السينكلترون ولكن الفرق ان مسار الجسيمات المشحونة يكون في خط مستقيم حيث لا نحتاج الى المغناطيس الباهظ التكلفة. يتكون المعجل الخطي كما في الشكل التوضيحي التالي من عدة سلسلة من الالكترود ذات الشكل الاسطواني والتي ترتبط ببعضها البعض من خلال مصدر فرق جهد متردد. تكتسب الجسيمات المعجلة طاقتها من الفجوة بين الاسطوانات نتيجة لفرق الجهد المطبق عليها وفي داخل الاسطوانة حيث لا يوجد مجال تندفع الجسيمات تحت تأثير قوة اندفاعها لفترة من الزمن تساوي نصف الزمن الدوري لفرق الجهد المتردد لحين تغير قطبية فرق الحهد المطبق على الاسطوانة التي تليها.

يستخدم الإشعاع المؤين ضمن خطة علاج السرطان، حيث يعتمد أكثر من نصف الولايات المتحدة على هذا العلاج. كما استُخدم الطب النووي في تشخيص وعلاج أمراض القلب، والغدة الدرقية، وتشخيص الزهايمر، وتشخيص الصمامات الرئوية الشريان التاجي. علم الآثار والفن يمكن معرفة تاريخ الآثار من خلال استخدام التقنيات النووية لمعرفة النظائر الاشعاعية والمستقرة المختلفة للآثار حيث انها تتحلل بمعدلات مختلفة. تستخدم أيضًا في معرفة أصول المنتجات اليدوية، مما يساعد العلماء على معرفة العلاقات الثقافية والتجارية بين الناس قديمًا. استخدامات أخرى تستخدم الإشعاعات المؤينة في تعقيم بعض الأدوات المنزلية والكابلات وقطع غيار السيارات والأسلاك. كما تستخدم لتعقيم الأدوات الطبية، وقد تستخدمها بعض البلاد في تعقيم المواد الغذائية مثل الخضراوات والفواكه. \ اقرأ: معلومة إثرائية عن الفيزياء تاريخ الفيزياء النووية عام ١٩٠٢م ومن خلال تجربة الثوريوم العملية أثبت العالمان فريدريك سودي وأرنست رذرفورد أن العنصر يستطيع أن يكون مشعًا طبيعيًا. في عام ١٩٠٧م قام إرنست رذرفورد بإثبات أن الثوريوم يشع بمادة تسمى ألفا، واستمر في البحث والدراسة حتى اكتشف أن الذرة تتكون من النواة وذلك في عام ١٩١١م.