حساب مساحة شبه المنحرف | المرسال

لا توجد أسماء مميزة أخرى تستخدم في شبه منحرف مع ميزات خاصة (مثل الزوايا اليمنى أو ثلاثة جوانب متطابقة). قد تكون الجوانب المتوازية رأسية أو أفقية أو مائلة، في الواقع حسب التعريف، يمكن القول إن الشكل هو شبه منحرف لأنه يحتوي على "زوج واحد على الأقل من الجوانب المتوازية" (وليس هناك ميزات أخرى مهمة). في بعض الأشكال، يكون الطرفان الآخران متوازيين، وأيضًا لا يفيان فقط بمتطلبات شبه المنحرف (رباعي الأطراف مع زوج واحد على الأقل من الجانبين المتوازيين) ولكن أيضًا متطلبات كونه متوازي الأضلاع. التعريف الوارد أعلاه هو التعريف المقبول في مجتمع الرياضيات، وبشكل متزايد في مجتمع التعليم، العديد من المصادر ذات الصلة بالتعليم من الروضة حتى الصف الثاني عشر كانت تقيد تاريخيا شبه المنحرف بحيث تتطلب زوجًا واحدًا من الجوانب المتوازية تمامًا. يستثني هذا العرض الأضيق المتوازيات كمجموعة فرعية من شبه منحرف، ويترك فقط الأشكال الأخرى، هذا التعريف الضيق يعامل شبه المنحرف كما لو كان مثلثات مثل "رأس واحد مقطوع بالتوازي مع الجانب الآخر. " الفرق بين شبه المنحرف متوازي الأضلاع كما هو الحال في أي شيء يتعلق بالرياضيات، نحتاج إلى تحسين سؤالنا ومعرفة ما نبحث عنه بالضبط.

مساحة شبه منحرف متساوي الساقين - موقع محتويات

إذا كانت القاعدة الأكبر a ، فإن c الجانبي والقطري d معروفان 1 ، فإن نصف القطر R للدائرة التي تمر عبر الرؤوس الأربعة لشبه المنحرف هو: R = a⋅c⋅d 1 / 4√ [p (p -a) (p -c) (ص - د 1)] حيث ص = (أ + ج + د 1) / 2 أمثلة على استخدام شبه منحرف متساوي الساقين يظهر شبه منحرف متساوي الساقين في مجال التصميم ، كما هو موضح في الشكل 2. وإليك بعض الأمثلة الإضافية: في العمارة والبناء عرف الإنكا القديم شبه منحرف متساوي الساقين واستخدموه كعنصر بناء في هذه النافذة في كوزكو ، بيرو: وهنا تظهر الأرجوحة مرة أخرى في المكالمة ورقة شبه منحرف ، وهي مادة تستخدم بكثرة في البناء: في التصميم لقد رأينا بالفعل أن شبه منحرف متساوي الساقين يظهر في الأشياء اليومية ، بما في ذلك الأطعمة مثل لوح الشوكولاتة هذا: تمارين محلولة - التمرين 1 شبه منحرف متساوي الساقين له قاعدة أكبر من 9 سم ، وقاعدته أقل من 3 سم ، وقطره 8 سم لكل منهما. احسب: أ) الجانب ب) الارتفاع ج) المحيط د) المنطقة الاجابه على يتم رسم ارتفاع CP = h ، حيث تحدد سفح الارتفاع المقاطع: PD = س = (أ-ب) / 2 ص AP = أ - س = أ - أ / 2 + ب / 2 = (أ + ب) / 2. باستخدام نظرية فيثاغورس للمثلث الأيمن DPC: ج 2 = ح 2 + (أ - ب) 2 /4 وأيضًا إلى المثلث الأيمن APC: د 2 = ح 2 + AP 2 = ح 2 + (أ + ب) 2 /4 أخيرًا ، عضوًا بعضو ، يتم طرح المعادلة الثانية من الأولى ومبسطة: د 2 - ج 2 = ¼ [(أ + ب) 2 - (أ-ب) 2] = ¼ [(أ + ب + أ-ب) (أ + ب-أ + ب)] د 2 - ج 2 = ¼ [2a 2b] = أ ب ج 2 = د 2 - أ ب ⇒ ج = √ (د 2 - أ ب) = √ (8 2 - 9⋅3) = 37 = 6.

مساحة شبه منحرف متساوي الساقين - موقع نظرتي

شبه منحرف احد الاشكال او المضلعات الرباعية فيه ضلعان متقابلان متوازيان على الاقل, او هو عبارة عن شكل هندسي رباعي الاضلاع فيه ضلعين فقط متوازيين و يستثنى من هذا التعريف متوازي الاضلاع و الذي يعتبر حالة خاصة من شبه المنحرف و يتضمن شبه المنحرف الضلعين المتوازيين بحيث انهما غير متساويين الضلع الاكبر فيهما يمثل القاعدة الكبرى و الاصغر القاعدة الصغرى. انواع شبه المنحرف. 1- شبه منحرف عام: – عبارة عن مضلع رباعي يوجد به ضلعان متوازيان و له قطران غير متساويان يتقابلان في نقطة ما, اما الارتفاع فيمثل المسافة العمودية بين الضلعين المتوازيين و يحتوي على اربع زوايا غير متساوية مجموع قياسها 360 درجة و كل زاويتان محصورتان بين الضلعين المتوازيين مجموعهما يساوي 180 درجة. 2- شبه منحرف مختلف الاضلاع: – يتكون من اربع اضلاع اثنان متوازيان غير متساويان و يمقلان قاعدتي شبه المنحرف و اثنان غير متوازيين و غير متساويين و له قطران غير متساويان يتقاطعان في نقطة ما و له اربع زايا مجموعها 360 درجة. 3- شبه منحرف قائم الزاوية: – يضم زاويتين قائمتين و الارتفاع فيه يمثل الضلع العمودي على القاعدة الكبرى و هو احد اضلاع شبه المنحرف و يمثل الارتفاع لشبه المنحرف.

مساحة شبه المنحرف وطريقة استنتاجها الصحيحة - جواهر

شبه المنحرف هو شكل رباعي له زوج واحد من الأضلاع المتوازية ، وتسمى الجوانب المتوازية قواعد ويطلق على الجانبين الآخرين أرجل ، ونظرًا لأن القاعدتين متوازيتان ، فإننا نعلم أنه إذا قطع المستعرض خطين متوازيين ، فإن الزوايا الداخلية المتتالية تكون مكملة ، وهذا يعني أن زوايا القاعدة السفلية مكملة لزوايا القاعدة العليا. الجزء الأوسط من شبه منحرف إن الجزء الأوسط من شبه المنحرف هو الجزء الذي ينضم إلى نقاط منتصف الساقين ، وهو دائمًا موازي للقواعد ، ولكن الأهم من ذلك هو أن الجزء الأوسط يقيس نصف مجموع مقياس القواعد ، وبما أننا نعلم أن مجموع جميع الزوايا الداخلية في الشكل الرباعي يساوي 360 درجة ، فيمكننا استخدام خصائص شبه المنحرف لإيجاد الزوايا والأضلاع الناقصة لشبه المنحرف. الآن إذا كان شبه المنحرف متساوي الساقين ، فإن الأرجل متطابقة ، وكل زوج من زوايا القاعدة متطابقان ، بمعنى آخر زوايا القاعدة السفلية متطابقة ، وزوايا القاعدة العلوية متطابقة أيضًا ، وبالمثل وبسبب الزوايا الداخلية للجانب نفسه فإن زاوية القاعدة السفلية تكون مكملة لأي زاوية قاعدة عليا. خصائص شبه منحرف متساوي الساقين هناك عنصر مميز يتعلق بشبه منحرف متساوي الساقين ، حيث أن شبه المنحرف هو متساوي الساقين إذا وفقط إذا كانت أقطارها متطابقة ، لذا إذا تمكنا من إثبات أن القاعدتين متوازيتان وأن الأقطار متطابقة ، فإننا نعلم أن الشكل الرباعي هو شبه منحرف متساوي الساقين ، على سبيل المثال الطائرة الورقية هي شكل رباعي يتكون من زوجين من الأضلاع المتطابقة المتتالية ، وعلى الرغم من عدم تطابق الأضلاع المتقابلة ، فإن الزوايا المتقابلة المتكونة متطابقة ، علاوة على ذلك فإن أقطار الطائرة الورقية متعامدة ، والقطري يشطر زوج الزوايا المتقابلة المتطابقة.

يجب أن تكون منحنيات الحدود الثلاثة التي تربط هذه الرؤوس الثلاثة محدبة، بمعنى أن أي قطعة خطية تربط نقطتين على نفس منحنى الحدود يجب أن تقع بالكامل خارج أو على حدود شبه المثلث. وبالتالي، فإن شبه المثلث هو المنطقة الواقعة بين الهياكل المحدبة لهذه المنحنيات الثلاثة بشكل عام. [6] [7] [8] وفيما يخص التطبيقات الخوارزمية ، يكون من المهم بشكل خاص توصيف أشباه المثلثات من المضلعات. المصادر [ عدل] ^ For "pseudo-triangle" see, e. g., Whitehead, J. H. C. (1961), "Manifolds with transverse fields in Euclidean space", Annals of Mathematics, 73 (1): 154–212, doi:10. 2307/1970286, JSTOR 1970286, MR 0124917. On page 196 this paper refers to a "pseudo-triangle condition" in functional approximation. For "pseudo-triangulation" see, e. g., Belaga, È. G. (1976), "[Heawood vectors of pseudotriangulations]", Doklady Akademii Nauk SSSR (in Russian), 231 (1): 14–17, MR 0447029. ^ Agarwal, Pankaj K. ; Basch, Julien; Guibas, Leonidas J. ; Hershberger, John; Zhang, Li (2002), "Deformable free-space tilings for kinetic collision detection", International Journal of Robotics Research, 21 (3): 179–197, ^ Streinu, Ileana (2000), "A combinatorial approach to planar non-colliding robot arm motion planning", Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE Computer Society, pp.