البرمجة الخطية والحل الأمثل

شرح لدرس البرمجة الخطية والحل الأمثل - الصف الأول الثانوي في مادة الرياضيات شرح لدرس البرمجة الخطية والحل الأمثل - الصف الأول الثانوي في مادة الرياضيات

البرمجه الخطيه والحل الامثل - اختبار تنافسي

‏نسخة الفيديو النصية في الفيديو ده هنتكلم على البرمجة الخطية والحل الأمثل. في الأول هنتكلم على البرمجة الخطية، وإزاي هنجيب القيم العظمى والصغرى للدالة. وبعد كده هنتكلم على إزاي نستخدم البرمجة الخطية في إيجاد الحل الأمثل. البرمجة الخطية هي طريقة لإيجاد القيمة العظمى أو الصغرى لدالة ما، تحت قيود معينة. كل منها بيبقى عبارة عن متباينة خطية. وذلك بعد تمثيل نظام المتباينات بيانيًّا. وتقع القيمة العظمى أو الصغرى إن وُجدت للدالة عند أحد رؤوس منطقة الحل. يعني إيه الكلام ده؟ يعني بنشوف طريقة نوجد بيها القيم العظمى أو الصغرى. فيه أوقات بنحتاج القيم العظمى؛ زيّ مثلًا أعلى ربح. أو الصغرى اللي هي أقل تكلفة. «لدالة» دي بنسميها دالة الهدف، اللي إحنا عايزين نوصل له. يعني مثلًا لو عايزين نوصل لأعلى ربح، أو أقل تكلفة. بنشوف علاقة بين متغيرين، ونحقق القيم العظمى والصغرى، تحت القيود اللي هيدّيها لنا. طيب «دالة الهدف» دي بتتكتب على شكل دالة في س وَ ص بتساوي أيّ رقم عدد حقيقي لا يساوي الصفر، مضروب في الـ س. زائد ب عدد حقيقي، مضروب في الـ ص. وده بيبقى شكل دالة الهدف، اللي إحنا عايزين نوصل لها. وبتبقى دالة خطية.

شرح درس البرمجة الخطية والحل الأمثل - الرياضيات (علمي) - الثاني الثانوي (العلمي والأدبي) - نفهم

أما إذا أردنا أن نفتش عن النقطة (قيم مثلى للمتحولات) من منطقة الإمكانات، والتي توافق القيمة فنكتب المسألة على الشكل التالي: ويجب الإشارة هنا إلى أن العلاقة التالية في مسائل التفضيل دوماً صحيحة: وهذا يعني أن الخوارزميات الموضوعة لحل البرامج الرياضية الخطية في حالة تعظيم، هي نفسها تصلح لحل البرامج الرياضية الخطية في حالة تقليل، وذلك بالاستفادة من العلاقة السابقة. الثنائية في البرمجة الخطية A series of linear constraints on two variables produces a region of possible values for those variables. Solvable problems will have a feasible region in the shape of a simple polygon. بوجه عام ودوماً يوجد إمكان اشتقاق برنامج رياضي خطي من كل برنامج رياضي خطي آخر مفروض، نسميه عادة بالبرنامج الثنائي أو بالبرنامج المرافق للبرنامج الرياضي الخطي الأساسي. وربما يكون حل البرنامج الثنائي أسهل من البرنامج الأساسي في بعض الحالات، ويمكن أن يفيد أيضاً في صياغة خوارزميات بُغْية إيجاد حلول لبرامج رياضية خطية، يطلب أحياناً أن تكون حلولها المثلى تنتمي إلى مجموعة الأعداد الصحيحة بدلاً من مجموعة الأعداد الحقيقية. البرنامج الخطي الثنائي للبرنامج الرياضي الخطي [ عدل] أهم الخوارزميات لحل البرامج الرياضية الخطية [ عدل] من أهم الطرق وأسهلها على الإطلاق لحل البرامج الرياضية الخطية، طريقة السمبلكس (1956) لـ دانتزغ Dantzig وقد بقيت هذه الطريقة مطبقة لسهولة التعامل معها على الرغم من ارتفاع تعقيديتها (تعبر التعقيدية عن عدد العمليات الحسابية الأعظمي للوصول إلى الحل المثالي للمسألة) وتقدر تعقيدية طريقة السمبلكس بـ عملية حسابية وهي تعقيدية أسية.

البرمجة الخطية.Pdf

سهل - جميع الحقوق محفوظة © 2022

يصاغ البرنامج الخطي لهذه المسألة على الشكل التالي: مثال2: مسألة التنظيم الغذائي اقترح طبيب على مريضه أن يتناول يومياً كحد أدنى كميات معينة bi من فيتامينات أو مقويات أساسية i=1, 2,..., m)Bi) ضرورية لجسمه. يريد هذا المريض أن يحصل على هذه الفيتامينات بتناوله الخضراوات والفواكه المتوفرة في الأسواق المحلية ولنرمز لهذه المواد بـ (Aj(j=1,..., n. لنفترض أن ثمن الوحدة الواحدة (مقدرة بـ غ أو كغ أو.... الخ) من المادة Aj هو cj وحدة نقدية حيث تحتوي هذه الوحدة على الكمية aij من الفيتامين الأساسي الأول Bi و a2j من الفيتامين الأساسي الثاني B2 وهكذا... والمطلوب في هذه المسألة تحديد الكميات (xj(j=1,..., n الواجب تناولها من المواد الغذائية من قبل المريض للحصول على تنظيم غذائي صحيح يحقق طلب الطبيب من جهة وبأقل التكاليف من جهة أخرى. مثال3: مسألة تنظيم الإنتاج لنفترض أن معملاً ينتج الأنواع (Aj(j=1,..., n من مادة معينة قابلة للتسويق، حيث يجري في عملية الإنتاج استخدام المواد الأولية (Bi(i=1,..., m المتوفر منها في المعمل وفي الوقت الحاضر الكميات (bi(i=1,..., m. إذا كانت الوحدة الواحدة من المنتج Aj تستهلك من المادة الأولية Bi الكمية aij وإذا كان الربح الصافي من إنتاج تلك الوحدة هو فالمطلوب تنظيم الإنتاج بحيث يحقق المعمل ربحاً أعظمياً.

أول حاجة هنحدّد المتغيرات اللي عندنا. إحنا عندنا عايزين نجيب عدد الأثواب الصغير والكبير. يبقى هنسمّي واحد س، والتاني ص. تاني خطوة عندنا هنكتب المتباينات. يعني هنشوف الـ س دي قيمتها من كام لكام. والـ ص قيمتها من كام لكام. ومجموعهم كام. ونحطهم في شكل متباينات. الـ س عندنا أكبر من أو يساوي ستمية إلى ألف وخمسمية. الـ ص من تمنمية إلى ألف وسبعمية. ومجموع س زائد ص، اللي هو ألفين ثوب. هنمثّل المتباينات دي بيانيًّا. بعد ما هنرسم المتباينات دي، هنلاقي إن هي دي منطقة الحل بتاعتنا. هنشوف رؤوس منطقة الحل، وهنمثّلها في جدول. عندنا الخمس نقط اللي إحنا رقّمناهم: واحد، اتنين، وتلاتة، وأربعة، وخمسة. بعد كده هنكتب الدالة الخطية اللي إحنا عايزينها. إحنا عايزين نوصل لأن دالة س وَ ص تبقى أقلّ ما يمكن. يعني التكلفة … يعني هنضرب قيمة تكلفة الثوب، في عدد الأثواب؛ علشان نعرف نوصل للقيمة الأقل تكلفة. يعني هنكتبها: خمسة وخمسين س زائد سبعين ص. يبقى هي دي دالة الهدف بتاعتنا، اللي إحنا عايزين نجيب القيمة الصغرى بتاعتها. يبقى هنعوّض بجميع النقط في خمسة وخمسين س زائد سبعين ص، ونوجد قيم الدالة. بعد ما عوضنا بالقيم في الدالة، هنلاقي إن أكبر قيمة عندنا للدالة هي ميتين وواحد ألف وخمسمية، دي اللي هتمثّل القيمة العظمى.